Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells
نویسندگان
چکیده
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its agonistic receptors have been identified as highly promising antitumor agents preferentially eliminating cancer cells with minimal damage, the emergence of TRAIL resistance in most cancers may contribute to therapeutic failure. Thus, there is an urgent need for new approaches to overcome TRAIL resistance. Gold nanoparticles (AuNPs) are one of the most promising nanomaterials that show immense antitumor potential via targeting various cellular and molecular processes; however, the effects of AuNPs on TRAIL sensitivity in cancer cells remain unclear. In this study, we found that AuNPs combined with TRAIL exhibited a greater potency in promoting apoptosis in non-small-cell lung cancer (NSCLC) cells compared with TRAIL alone, suggesting that AuNPs sensitize cancer cells to TRAIL. Further experiments demonstrated that the combination of TRAIL and AuNPs was more effective in causing excessive mitochondrial fragmentation in cancer cells accompanied by a dramatic increase in mitochondrial recruitment of dynamin-related protein 1 (Drp1), mitochondrial dysfunctions, and enhancement of autophagy induction. Small interfering RNA (siRNA) silencing of Drp1 or inhibition of autophagy could effectively alleviate apoptosis in cells exposed to TRAIL combined with AuNPs. In vivo studies revealed that AuNPs augmented TRAIL sensitivity in tumor-bearing mice. Our data indicated that AuNPs potentiate apoptotic response to TRAIL in NSCLC cells through Drp1-dependent mitochondrial fission, and TRAIL combined with AuNPs can be a potential chemotherapeutic strategy for the treatment of NSCLC.
منابع مشابه
Specific mitochondrial calcium overload induces mitochondrial fission in prostate cancer cells.
Mitochondria are structurally complex organelles that undergo fragmentation or fission in apoptotic cells. Mitochondrial fission requires the cytoplasmic dynamin-related protein, Drp1, which translocates to the mitochondria during apoptosis and interacts with the mitochondrial protein, Fis1. Finely tuned changes in cellular calcium modulate a variety of intracellular functions; in resting cells...
متن کاملDistinct effects of TRAIL on the mitochondrial network in human cancer cells and normal cells: role of plasma membrane depolarization
Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a promising anticancer drug due to its tumor-selective cytotoxicity. Here we report that TRAIL exhibits distinct effects on the mitochondrial networks in malignant cells and normal cells. Live-cell imaging revealed that multiple human cancer cell lines and normal cells exhibited two different modes of mitochond...
متن کاملSynergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells
Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...
متن کاملDefects in Mitochondrial Fission Protein Dynamin-Related Protein 1 Are Linked to Apoptotic Resistance and Autophagy in a Lung Cancer Model
Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549) cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynam...
متن کاملDownregulation of dynamin-related protein 1 contributes to impaired autophagic flux and angiogenic function in senescent endothelial cells.
OBJECTIVE Recent studies have shown that altered mitochondrial dynamics impairs the function in senescent endothelial cells (ECs). However, the underlying molecular mechanism remains to be elucidated. Herein, we investigated the role and underlying mechanism of mitochondrial fission protein dynamin-related protein 1 (DRP1) in vascular aging. APPROACH AND RESULTS We found that DRP1 expression ...
متن کامل